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TEXTBOOK MULTIGRID EFFICIENCY FOR THE INCOMPRESSIBLE

NAVIERoSTOKES EQUATIONS: HIGH REYNOLDS NUMBER WAKES AND

BOUNDARY LAYERS

JAMES L. THOMAS*, BORIS DISKIN_. AND ACHI BRANDT_

Abstract. Textbook multigrid efflciencies for high Reynolds number simulations based on the incom-

pressible Navier-Stokes equations are attained for a model problem of flow l)ast a finite flat plate. Elements

of the Full Approximation Scheme nmltigrid algorithnl, including distributed relaxation, defect correction,

and boundary treatment, are presented for the three main physical aspects encountered: entering flow, wake

flow, and I)oundary layer flow. Textbook efficiencies, i.e., reduction of algebraic errors below discretization

errors in one full multigrid cycle, are attained for second order accurate simulations at a laminar Reynolds

number of 10,000.

Key words, incompressible Navier-Stokes equations, textbook nmltigrid efficiency, distributive relax-

ation, defect-correction iteration

Subject classification. Applied and Numerical Mathematics

1. Introduction. In tile mid-70's, Beam and Warming [1] presented an imI)licit scheme for the com-

pressible Nasqer-Stokes equations which had a significant impact oil the fieM known as Computational Fluid

Dyimmics (CFD). The method they presented, based uI)on a spatial factoring of the implicit equations in

delta fornl, used alternating tridiagonal line relaxations to solve high Reynolds nmnber viscous sinmlations.

This method proved to be much more efficient than other approaches. The basic nlethodology is still widely

used and has been extended to very general al)plications across the Math mmfi)er range, torming tile foun-

dation for many general purpose solvers worldwide, among them At/CaD [S] and CFLaD [7] at the NASA

Ames and Langley Research Centers, respectively. This seminal contribution of Beam and Warming was a

critical building block to the acceptance of CFD using Reynohts-Averaged Navier-Stokes (RANS) solvers t)y

the aircraft industry. Today. computational methods for the cruise shapes of transport aircraft, designed

to minimize viscous and shock wave losses at transonic speeds, are reasonably well in hand. Sinmlations of

off-design performance, involving unsteady separated and vortical flows with stronger shock waw_s, require

significantly greater coml)uting resources: this requirelnent limits further inroads into tile design process with

CFD.

As a typical example of current RANS capability, tile CFL3D code is based on the spatially-factored

scheme of Beam and Warming and uses multigrid to accelerate convergence to steady state; using alternating-

line implicit block 5x5 matrix solutions, approxinmtely 200 updates are required to converge the lift and

drag to one percent of their final values for wing-body geometries near transonic cruise conditions. Complex

geometry and coInplex physics sinmlations generally require many more residual evahmtions to converge, and

sometimes convergence cannot be attained. Now, it is well-known for fully elliptic problems that solutions
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can be attained using a flfll multigrid (FMG) process in far fewer, on the order of 2-4, residual evaluations.

Ot)timal convergence is defined by Brandt [2, 3, 4} as textbook multigrid efficiency (TME), meaning the

solutions to the governing system of equations are attained in a computational work which is a small (less

than 10) multiple of the operation count in the discretized system of equations. Thus, there is a l)otential

gain of more than two orders of magnitude in ol)eration count reduction if TME could be attained for the

RANS equation sets. The l)rincitml difficulty stems from the fact that the RANS equation sets are a system

of coupled nonlinear equations which are not, even for subsonic Math numbers, fully elliptic, but contain

hyt)erbolic factors. Brandt [4] has sunmmrized the progress and remaining barriers to achieving TME for

the e(luations of fluid dynamics.

The I)urpose of this paper is to l)resent a multigrid method which attains textbook efficiencies for one

of tile most bask: simulations encountered in fluid dynamics the incompressible viscous flow past a finite

fiat plate at high Reynolds number. Tile flow, although relatively simple, contains several basic elements of

the barriers to be overconm ill extending textbook efficiencies to the conq)ressible RANS equations, namely

entering flows, far wake flows, and t)oundary layers. A central element of the multigrid method presented

is the decolnposition through distributed relaxation [3] of the the system of equations into separate, usually

scalar, factors that can be treated optimally, i.e., through marching for the hyperbolic factors and through

multigrid for the elliptic factors. Although we restrict ourselves to incompressible flow, the procedures carry

over directly to the compressible flow case, at least for subcritical flow [3, 4, 10 I.

2. Governing Equations. The equations considered here are the steady, incompressible Navier-Stokes

equations in nonconservative form. i.e., two momentum equations and the continuity equation.

r(q) = L;q = 0,

expressed in terms of primitive (veh)cities and l)ressuro) variables q = (u, v, p)'r, where

(2.1)

Q,, 0 0x J
£ = (I Q,, 0:,_ (2.2)

0, 0y 0

Tile operator Q, represents convection and diffusion effects a_s

Q,, _--Q - .A (2.a)

where Q = UOx + *,0u, the Laplacian operator is A = 0_, + Oyu, and the kinematic viscosity is u = l/Re,

where Re is Reynolds number. Extensions to conservation law forxn for tile momentum equations and to

inclusiou of the energy equation are possible, but not considered here.

Tile determinant of the matrix of operators,

I£1 = -Q. A, (2.4)

corresI)onds to an ellil)tic factor, represented by tile Laplacian, and a convection-diffusion factor, gener-

ally recognized as the convection and diffusion of vorticity along a streamline. For high Reynolds number

simulations, there arc two importallt scales: the viscous scales in tile thin viscous layers near bodies and



in theirwakesandtheinviscidscales,whichpredominateovermostof the flowfield. Fortile nunlerical
calculationsbelow,thethin-layerapproximation,inwhichonlytheviscoustermsassociatedwithvariations
in thecoordinatenormalto thebodyareretained,isused.

3. Multigrid Method. Thepresentapproachusesafullmultigrid(FMG)algoriflun[2,3],proceeding
fromthecoarsestgridto finergrids.Thesolutionis interpolatedfronl tile currentgridto the nextfiner
grid.Thegoalof thealgorithnlis fastreductionof thealgebraicerrorsbelowtile discretizationerrorsona
givengrid,beforemovingto thenextfinergrid. Thealgebraicerrorsof thediscreteequationsona given
gridarereducedthrougha FullApproximationScheme(FAS)[3]multigridscheme,in whichcorrectionsto
thenonlinearequationsareobtainedfromcoarsergridsolutions.Theschemeisdescribedbelowby means
of atwo-gridnotation,inwhichthefinegridisdenotedbysuperscripth and the coarse grid by superscript

2h.

Tile steady-state residual operator to be solved on the fine grid is tile discrete version of Eq. (2.1),

rh(q t') = 0.

The initial fine-grid approxinmtion qh is prolonged from the coarse-grid solution q2h as

(3.1)

qh _-- T, qgh. (3.2)

where _' denotes a t)rolongation ol}erator. After relaxation(s) of the fine-grid operator to obtain an approx-

imation _1h, tile coarse-grid equation at, level 2h to be solved for a correction to the fine grid is

r2h (q2h) = r2h (7_1 h ) _ 7_r h (_lh), (3.3)

where _ denotes a restriction operator for transfer of information to the coarser grid and tile tilde sut)erscrit)t

denotes a most recently available value. This coarse grid equation is then solved by some iterative method

(or directly if tile grid is coarse enough). Tile correction from the coarse grid (grid 2h) is prolonged to the

finer grid as

{Tth +--- _th + p(q2h _ TC_lh). (3.4)

The restrictions 7-¢ used here are volume-weighted for the continuity equations; for tile momentum equations,

the c,oarser (:ell values are found by volume-weighted restrictions in the direction parallel to the cell interface

along with full-weighted restrictions in the orthogonal direction, i.e., for the y-momentum equation, volume-

weighted horizontally and flfll-weighted vertically. The prolongations P are bicut)ic interpolations from

coarser meshes for both the solution and the correction , although results with linear interpolations were

nearly identical. The FAS cycle described above is used extensively in current Euler and Navier-Stokes

solvers. The algorithm is critically dependent on the choice of relaxation operator; distributed relaxation is

used here as described subsequently.

The coarse-grid equations are thelnselves solved with "ycycles of the algorithm applied recursively, where

= 1 would corresl}ond to a V-cycle and _ = 2 to a W-cycle; the nund}er of relaxations on tile downward

and upward legs of the cycle are denoted as (ul, u2). We use here (ul, u2) = (2, 1) and a variant of ttw



FV(v 1,v=) Cycle

4-k)vels __

FI(;. 3.1. Schematic of the FV-cycle for @level multzgT_d where _o denote,s the_ number of relaxation,_ on the coarsest mesh

(_h ).

V-cycle, termed an FV-cycle. in which the initial approximation to tile correction on the 2h grid is obtained

through a FMG process. The cycle is sketched in Fig. 3.1; the amount of additional comt)utational work

compared to it standard V-cycle is small, in the ratio of 8/7 in the limit of an infinite number of levels in two

dimensions. For the sinmlations here, six levels were used wherever possible. The notation FMG-n denotes

an FMG cycle with n FV(2,1) cycles at each level.

4. Distributed Relaxation. Away from boundaries, the correction dq to the current approximation

q, introduced at the stage of distributed relaxation, [2, 3] is calculated fl'om

Laq = -r(q), (4.1)

where L is a principal linearization of £, in which the coefficients u and v in Eq. (2.3) are evaluated from

the current approximation and fixed throughout the relaxation. Note this is not a Newton linearization:

only the principal terms at the viscous and inviscid scales are retained. The distributed relaxation method

replaces dq by M_w so that the resulting nmtrix LM becomes a diagonal or lower triangular matrix, as

L M dw = -r(q). (4.2)

The diagonal elements of LM are composed ideally of the separate factors of the determinant of the matrix

L and represent the elliptic or hyperbolic features of the equation. For incompressible flow, the distribution

matrix M can take on a particularly simple form, as determined by the cofactors of the third row of L

divided by their common factor, as

1 o -0_]
M= 0 1 -0y , (4.3)

0 0 Q,,



yielding

I O. 0 0
LM = 0 Q,. 0 (4.4)

0x 0:,. - A

Tile determinant of tile operator matrix LM,

ILM[ = -Q_A, (4.5)

corresponds to an elliptic factor and two com_eetion-diffusion factors; the additional term over Eq. (2.4), Q,,,

indicates that as a set of new variables, dw would generally need additional boundary conditions all around

the boundary (or, just at inflow in the case t_ = 0). Brandt termed the variables aw as "ghost variables,"

since they need not explicitly appear in tile calculations: here, they do appear in the calculations, although,

as with the original intent, the boundary conditions are derived from the original prilnitive variables. Tile

equations to solve for the ghost variables are given explicitly as

(_tASW 1 = --7" 1,

Qu&v2 = -r2,

A ei'_,.._= +r:_ + 0,&Vl + i)y&,2.

(4.6)

Near boundaries, the general approach, [3, 4] would be to relax the governing equations directly, since

the equations do not necessarily decouple near boundaries as they do in the interior of the domain. One

Call nmke more general, but possibly slowly converging, relaxations, such as Kaczmarcz relaxation, in this

region. This will not affect the overall complexity, because the number of boundary points is negligible in

comparison to the uumber of interior points. Here, however, we use an approach which applies the interior

distributive relaxation operator also at the boundaries, inferring boundary conditions for the ghost variables

based on the boundary conditions of the governing equations. The cost is that the correction equations,

Eq. (4.6), no longer assume a triangular form, requiring a block matrix solution at tile boundaries rather

than the scalar solutions attained away from the boundary. Assuming linearized flow, tile appropriate ghost

variable boundary conditions at the differential level are derived for inviscid inflow and outflow in Appendix

I and tangency in Appendix II . These boundary conditions are implemented discretely at the corresponding

boundaries. At tile no-slip boundary, the corresponding discrete boundary conditions for the ghost variables

are constructed in Appendix III. The procedure is etfective for the simulations considered here; details are

given in subsequent sections.

5. Defect Correction Relaxation. Sinee Eq. (4.2) is written in delta form, it is natural to consider

defect correction for the update, namely a lower-order discretization of the left side of Eq. (4.6) in order

to simpli_ _ the construction and reduce the bandwidth of the implicit operator. Here, we use a first-order

upwind discretization for the conw_ctive part of the convection-diffusion operator, Q,,, in Eq. (4.6). The

distributed relaxation operator can thus be written ms

[L M]d/iw = -rt, (5.1)
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FI(;. 6.1. Variable description for a grid of JxK - N×xNy points.

where the subscripts t and d denote sonm desired "target" and "driver" schenms on the right and left sides,

respectively, of the equation.

For hyperbolic equations, the initial convergence of defect, correction may be slow for certain, not nec-

essarily high, frequencies [9, 10, 6]. For a target second-order upwind-biased discretization corresponding

to t_ = 0, defined subsequently, the asymptotic convergence rate is approximately 0.5 per defect-correction

iteration. Thus, it is well-matched with the convergence rate of 0.5 per relaxation expected for the elliptic

parts of the operator with Gauss-Seidel rehtxation.

Defect correction is implelnented in the multigrid algorithm as follows: any discrete evaluations of

the residuals of Eq. (3.1) (including residuals transferred to the coarse mesh) are done with the target

discretization and an3" updates via distributed relaxation are done with the driver operator, which is first-

order upwind for convection. This is similar to tile "double-discretization" approach of Brandt [3] in practice,

except that the target residual is evaluated on all of the meshes, including the finest mesh.

6. NuInerieal Diseretization.

6.1. Spatial Diseretization. The staggered-grid discretization used here, as shown in Fig. 6.1, is usual:

p defined at the cell-centers of tile grid, u defined at tile cell interfaces tangent to the y- or k-direction, and

v defined at the (:ell interfaces tangent to the a'- or j-direction. Additional values of t, and p are defined

at inflow and outflow boundaries in order to accommodate boundary conditions, defined subsequently. The

discrete scheme with such a staggered-grid arrangement of variables can be described as

L/'q t' = 0 Q t_ 0 h qh = 0, (6.1)g

0



where 0xh and 0_ are generally distance-h central differences Oll the staggered grid. The operator Q h is

composed of convection and diffusion elements, analagous to Eq. (23); the diffusion elements are treated

with central differencing,

, h 1 uj,k+_____Lj-- ua__:j,, uj,_,. - ua,l,._l ], (6.2)
(Oyy'a)j k -- (hy)j,kt (tZy)j,k+l/2 (hy)j,k 1/2

where hy denotes grid spacing ill tile y direction.

The discrete convection operator Qh is upwind-biased, of either tile standard upwind differencing (SUD)

type or the narrow upwind differencing (NUD) type. The operator can be defined on a uniform grid in terms

" ±'" T ±'n _T±mu uj+m,k). The SUD scheme can I)e defined asof translation operators Tj and _, , t j j,k =

Q,, I_ID(TSV,,(,,)) l"lD(T<q,,(,,)_

where hx is the grid sl)acing in the x direction, the sign fulmtion sgn is defined as

(6.a)

and D is defined as

+1 ifx > 0,
s qtz(x) = -1 ifx < 0

0 otherwise,

D(z) - c_2z -2 + c_lz -1 + co + ('1 z+l.

The NUD scheme can be defined as below for _ _> _,

Qh = (hxlul _IUI_D(Tsan('_)_'--'*o" + IVlD(T£gn(")Ti*m_(U))h_" • (6.4)

and as below for I_l I,'1
_<_,

Qh Jul n(T_g,,(,,)T_g,_(,,)_ + (JvJ lUl)D(T.Tg,,v)). (6.5)
= h--7_*j k _ h u tG.

For uniform meshes or lneshes in which the stretching ratio is/_ = 1 + O(h), h--schemes of at least, second

order accuracy (SUD-2 and NUD-2) are defined tor K c [-1, 1] as

1

{C_2, C_I,CO, C1} -- 2 + 2/_4{1 -t.,;, 3s-5, 3(1 -_), I+K}

and third-order accuracy (SUD-3) is attained for _ = 1/3 with uniform meshes or meshes in which the

stretching ratio is 3 = 1 + O(hg). On stretched grids, the reference meshsize, hi_l�2, appearing in (the

denonfinator of) the discrete one-dimensional convection operator, D(T,)/hi_ a/'2, is a meshsize upstream of

the i-th node where the discrete operator is defined. The coefficients for the first-order upwind schemes

(SUD-1 and NUD-1) are

{c-2,c-l,co,cl} = {0, -1, 1, 0}.



TABLE 7. l

Errors m t, with the FMG-1 cycle for entering flow using a second order accurate discretization of the continuity equation:

t=0.5.

Scheme h

SUD-1 1/16

SUD-1 1/32

SUD-1 1/64

SUD-1 1/128

NUD-1 1/16

NUD-1 1/32

NUD-1 1/64

NUD-1 1/128

SUD-2 1/16

SUD-2 1/32

SUD-2 1/64

SUD-2 1/128

NUD-2 1/16

NUD-2 1/32

NUD-2 1/64

NUD-2 1/128

Ikdll Ik ll/II dll :
0.115556x10 ° 0.019

0.664116xlO- 1 0.008

0.357011x10- l 0.006

0.185119xlO -1 0.002

0.476075x10-1 0.007

0.246260x10-1 0.008

O.125445x 1O- 1 0.006

0.633386x10 -2 0.003

0.689001x10 -2 0.024

0.154126x10 -2 0.039

0.368421x10 -3 0.034

0.905679x10 -4 0.026

0.251242x10 -2 0.128

0.637956x10 -3 0.046

O.159458xl O- :_ 0.046

0.397594x10 -4 0.047

TABLE 7.2

t')TT"ors in u and v for entcmng Jtow with a fourth order accurate discrctization of the continuity equatwn: t=0.5.

Schenm h

SUD-3 1/32

SUD-3 1/64

SUD-3 1/128

NUD-2 1/32

NUD-2 1/64

NUD-2 1/128

I1 .1I:" Ik.ll :"
0.325327x10 -3 0.182866x10 -:_

0.425745x10 -4 0.231228x10 -4

0.547187x10 -5 0.292787x10 -5

0.121481x10 -3 0.591146x10 -4

0.151229x10 -4 0.724727x10 -5

0.186856x10 -5 0.885510x10 -_

6.2. Gauss-Seidel Line Relaxation. The equations for 5w are relaxed with a line-y Gauss-Seidel

algorithm marching from the inflow to the outflow houndary. The correction equations for 5w are solved

implicitly because of the highly stretched mesh used for the viscous calculations. Since the thin-layer ap-

proxinmtion is made for the viscous terms, the convective operator is first-order upwind, and there is no

streainwise reversed flow, the (_'u'l and 5w2 correction (driver) equations of Eq. (4.6), (:orresponding to the

linearized momentmn equations at given pressure, are solved exactly. The linty solutions require only in-

versions of tridiagonal (rather than block-tridiagonal) Inatrices, since the equations for 5w form a lower

triangular set except near the I)oundaries. The treatment at boundaries requires special consideration as

discusse(t subsequently.. Note that for the NUD schemes in inviscid flow with tSU < t7,,,1_1 Ivt the tridiagonal

equations for dwl and 5w2 reduce to diagonal equations.
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FIC;. 7.1. Maximum residual and algebraic-to-discrctization errors in u versus multig_'id cycle for the three finest grads

with thc NUD-2 scheme.

7. Entering Flow Simulation. The flow field upstream of an external aerodynamic simulation is

basically inviscid. Brandt and Yavneh[5] considered multigrid solutions of such flows and showed the accuracy

of the coarse grid correction to be critically dependent on the alignment of the flow relative to the mesh. Their

nmnerieal results indicated the necessity of W-cycles to converge the algebraic errors below discretization

errors in the FMG-1 cycle. We revisit these sinmlations below with slightly different boundary con(titions

and show that the FMG-1 cycle with the use of FV-cycles is suflicient. The comt)utations were done for

a square domain with t)eriodicity in the y-direction on a unifi)rm mesh. Inflow boundary conditions were

st)ecified velocities as



_(o, y) = 1 + O.5cos(2_-y),

u(0, y) = tu(0, y), (7.1)

with constant pressure at the outflow boundary. The tangent of the angle of the flow relative to the grid

is t = 0.5, corresponding to the maximum value studied by Brandt and Yavneh[5]. The exact solution

corresl)onds to convection along a streamline at COl_stant l)ressur(,,

¢_(:c, !1) = 1 + 0.Scos(27r(y - tx)),

,,(:,,,._)= tu(._.,y) (7.2)

The boundary conditions for the correction equations are implemented by applying the distributed

relaxation equations 5q = MSw at the b(_un(tary along with a Dirichlet condition for (5w)3 at inflow. The

resulting discrete boundary conditions at x = 0 are

({11!2= (),

gU'3 = O,

_,,_ = _9_(_w:_). (7.3)

This boundary condition is the discrete equivalent to the original problem statement for the constant coef-

ficient problem. This boundary condition couples the 5Wl and gw3 equations together at the line of cells

adjacent to the inflow boundary, necessitating a block 2x2 block matrix solution procedure; away from this

first line, the equations retain the triangular form of Eq. (4.6) and can be solved as scalar equations. The

downstreanl boundary condition is iml)lemented by solving for 5u'3 at the last interior colunm of cells simul-

taneously with _itt,:_ at the outflow colunln, again necessitating a 2x2 block matrix tridiagonal solution. A_er

sweeping through the domain, all of the momentum equation residuals are zero in the constant coefficient

case; this local I)lock matrix coupling at either boundary eliminates the need for the extra sweep of the

residual equation advocated by Brandt and _:avneh[5]. The residuals remain non-zero in the general case

because of subprincipal terms and are restricted to the coarse grids. Enforcing periodicity in the y-direction

in the tridiagonal solver eliminates the need to consider any special boundary conditions in that direction.

Special forms for the spatial discretization of the convective operator in E( t. (6.1) at inflow and outflow are

given in Appendix IV.

The L2-norms of the discretization errors in u after complete convergence and the ratios of the L2-norm

of the algel)raic errors divide([ by the L2-norm of the discretization errors after one cycle are shown in

Table 7.1 for various grid sizes and orders of accuracy. The algebraic errors are reduced substantially below

the discretization errors in one cycle. The error norms indicate a first order accuracy for SUD-1 and NUD-1,

and second order for SUD-2 and NUD-2, as expected.

At this flow angle, t = 0.5, the NUD-2 scheme exhibits third-order accuracy for the linearized convection

problem but does not for the fiill Euler equations because second order accurate discretizations are used for

the contilmity equation, for the pressure terms in the momentum equation, and for the reconstruction of

the flow at an interface. To remedy this, these discretizations were improved to fourth order accuracy; the

corresponding results shown in Table 7.2 for both the SUD-3 and NUD-2 schemes now exhibit thir(t-order

accuracy in _1 and 't'.

l0
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FIG. 8.1. (7rid used for the wake and finite flat plate simulation.

TABLE 8.1

Computed values of centerline velocity at x = 1.5 for the wake simulation: ,qUD-2 .scheme: _ = O: w d : 0.5: ll'( : Ilk 000.

" IIc. II/ll_dll : e*

._'xxNy"_ (FMG-IO) (FMG-1) (FMG-1)

49 x 25 0.730529 0.730585 0.00445

97 x 49 0.740382 0.740412 0.01135

193 x 97 0.742367 0.742385 0.02672

The reduction of the maximum residual and the algebraic-to-discretization errors over 4 cycles for the

three finest grids in the calculation are shown in Fig. 7.1 for the NUD-2 scheme with second and fourth order

accurate discretizations of the continuity equation. For second order accuracy, the residual and algebraic-

to-discretization errors are reduced four orders of magnitude over the 4 cycles, close to the theoretical limit

exI)ected for ellit)tic equations of (().5) a = 0.125 reduction per FV(2,1) cycle. The convergence for the third

order accurate results deteriorate somewhat to three orders of magnitude ow_r the four cycles but is still

quite reasonal)le considering that defe(:t correction with a first-order driver operator is t)eing used. Further

improvements could t)e made t)y additional sweeps or by a predictor-corrector sequence of the momentum

equations only, since tile deficiency resides with the first-order accuracy in the driver operator for convection.

8. Wake Flow Simulation. The wake and the finite fiat. plate sinmlation t.o follow were comlmted for

the computational domain shown in Fig. 8.1 at a Re=10,000 based on the height of the channel. The grid

was stretched in the y-direction with a stretching factor on a specified mesh defined as

_0 = (hv)j,k+_/(hv)j _.

corresponding to (N.,_)0 grid 1)oints in the vertical direction. The stretching ratio (m all other meshes is

_ _. !_((N,,),,-1 /(N,, l)

Freestream pressure is specified at the outflow boundary; a wake deficit was prescribed at the inflow boundary,

x = 0, according to
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(b) Algebraic-to-discretization errors in mass flow.

t.'](;. 8.2. H/ake simulatio?t com,e*yence usin9 the FMG-5 cycle; wa = 0.5:SUD-2 scheme: _ = 0.

u([),!l) = 1 --u.,dexp( ), v(0, y) = O,

where 'wd = 0.5. The mass flow is defined as the integral of velocity at constant x; the exact value is

0.9911377307. The boundary condition treatments at inflow and outflow are the same as those for the

12
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F](:. 9.1. Convergence of the C I values at x = 1.5 with nominal grid spacing for two ,_tretching ratios: SUD-2 sch,emc:

= O; Re = 10,00(}.

entering flow discussed previously. Symmetry conditions are applied at y = 0 fi)r both q and 5w. A

tangency condition, v = 0, was applied at y = 1; applying the distribution operator at this l)oint with

simple reflection for u across the boundary indicates that a Neumann condition can he applied to dw:, at

the boundary, as shown in Appendix II, along with reflection tbr 5'wl and a Dirichlet condition for 5w2, if

needed.

The finest grid considered was NxxNy = 193x97 with ;3o = 1.03 corresponding to (Ny)0 = 97. In

addition to residuals, the centerline velocity (obtained by second-order extrapolation) and the mass flow

were monitored at x = 1.5, a location midway in the domain, as a measure of spatial convergence. The

reductions of the maxinmm residual and the algebraic-discretization errors in mass flow for all the grids in

an FMG-5 process are shown in Fig. 8.2 using the SUD-2 scheme. For each of the Ineshes, the residual is

reduced 4-5 orders of magnitude and the algebraic errors are reduced far below discretization errors. The

centerline velocities fi)r the three finest grids, Table 8.1, denlonstrate second order accuracy with algebraic

errors reduced below discretization errors using the FMG-1 cycle. The reference centerline velocity was

obtained by second order Richardson extrapolation.

Although not shown, parameter variations in wa were made whieh indicated the results were not sensitive

to wd over the range investigated, 0 to 0.9. This is in contrast to an earlier apl)lication,[10 ] in which the

ghost variable equations were solved with a correction scheme (CS) nmltigrid. Those results deteriorated for

high values of Wd, emphasizing the advantage of applying the FAS multigrid scheme to the whole nonlinear

system of equations. For linear equations, the performance of FAS multigrid is the same as CS multigrid .

9. Flat Plate Boundary Layer Simulation. For the fiat plate simulation, no-slip conditions are

prescribed from x = 1 to x = 2 along the lower boundary and symmetry conditions Ul)stream and downstream

of those I)oints; a wake profile develops downstream of the trailing edge, x = 2. The inflow and outflow

conditions are prescribed freestream velocities (u_ = 1, v_ = 0) and pressures, respectively. The discrete

velocities adjacent to the plate for y < 0 are required to satisfy the no-slip condition at the l)late, i.e.

u(x,-it,/2) = -u(x,/tv/2); v(x,-hv ) = -v(x, hy). The distributive relaxation equations applied at the

boundary are shown in Appendix III.

13



TABLE 9. ]

Computed values of total drag for the finite flat plate simulation,. SUD-2 scheme: K = O; Re = 10,000:fl0 = 1.03.

CD CD II_all/lleaII : CD

NxxNy (FMG-10) (FMG-1) (FMG-1)

49 x 25 (/.011552 0.011753 0.0784

97 x 49 0.013492 0.013412 0.1284

193 x 97 0.013961 0.014051 0.5760

0.1

0.05

A
Q- 0

i
qp,,,

-0.05

-0.1

193 x97

- -o- - 97x49

i h i
0

i i I I i L i I

1 2

X'(X)b,,at.Q.d_

FI(;. 9.2. Pressures (y = O) for the finite flare plate: Re = 10, 000.

The spatial convergence of the local skin friction C I midway down the plate versus the nominal grid

spacing for two families of meshes for two stretching ratios is shown in Fig. 9.i, where

C/ h 2= 2.(O_u)lu_.

The two finest grids in each family are 289x145 and 193x97. Second order accuracy is evident; the results

with higher stretching ratio are slightly more accurate on coarser grids. The results converge to a value

approxinmtely five percent higher than the Blasius value, C/ = 0.664/_ = 0.00939, where g' denotes

distance from the leading edge, because of the presence of a favorable pressure gradient (accelerating flow)

over most of the plate, as shown in Fig. 9.2. Convergence of the L_-norm of the residual and estilnated

algebraic-to-discretization errors in total drag Co are shown in Fig. 9.3. The total drag is defined as

jfz 2C1) = 2C_(x* - 1) + Cldx,

where the C I behavior ahead of x* = 1.25 is assumed to be an inverse square root behavior in distance from

the leading edge as occurs with the Blasius solution. The infinite-grid result is extrapolated using the two

14



10 0

10"

E
10:

Z

'o
"_ 10 "s

¢r

10 .4

1OS0

= N_xNy

13x7 25x13

I\

i

@

\

\

49x25 97x49 193x97

5 10Cycles15 20 25

(a) L,)-norm of tile residual.

100
uJ

o

10"
N

,m

10 2

10.3
IIJ

.9
10 -4

J_

m

-< 10%

, @

cCR
@

\

@

\
@

NxXNy =
13x7 25x13 49x25 97x49 193x97

@

I

e

e
e @

\

5 10Cycles15 20 25

(b) Algebraic-to-discretization errors in C_).

FI(;. 9.3. Errors per cycle using the FM(;-5 cycle: flo = 1.03:SUD-2 schcm(;h" = O: Re = 10,000.

finest grids. Both the residual and algel)raic-to-discretization errors are reduced nearly four orders of mag-

nitude over five cycles for the four finest grids, close to the convergence expected for elliptic equations. The

CD values on the three finest meshes are given in Table 9.1, confirming that the algebraic-to-discretization

errors are reduced below unity in a single cycle. The values extrapolate to a slightly larger value than the

Blasius value, CD = 1.338/V_R_ = 0.013280. ¥_locities normalized to the boundary layer edge veh)city, u(,,

versus the scaled normal coordinate, _], are shown in Fig. 9.4 for the two finest grids in one family; either

computation is indistinguishable from the Falkner-Skan boundary layer analytic result that accounts for

15
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FIG. 9.4. Scaled velocity profiles/or the finite plate at x = 1.5; Re = 10, 000; O = (Y/'X)_.

streamwise pressure gradient.

The largest diseretization errors as well as the largest residuals occur near tile leading edge singularity,

as can be noted in Fig. 9.2. Although not tried, a local refinement near this boundary would be beneficial.

10. Concluding Remarks. A multigrid method for solving the incompressible Navier-Stokes equa-

tions has been applied to a classical model pr()blem of fluid dynanlics: flow past a finite fiat plate at high

Reynolds number. Elements of the Full Approximation Scheme multigrid algorithm, including distributed

relaxation, defect correction, and boundary treatment, have been presented in some detail for the three nmin

physical asl)ects encountered in the simulation: entering flow, wake flow, and boundary layer flow. Textbook

elliciencies, i.e., reduction of algebraic errors below diseretization errors in one multigrid cycle, and residual

reduction rates approaching the value expected for ellil)tic equations of nearly one order of magnitude per

(:y('le, are attained for second order accurate simulations at a laminar Rcynolds number of 10,000.
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Appendix A. Linearized Euler Equations.

The linearized Euler equations,

L_( q )= 0, (A.1)

with periodicity in the y-direction over a finite domain, 0 _< x _< L, are considered, where q represents a

perturbation from freestremn values. The convection operator is assumed to be constant ms

Qo - i)_ + tO_, (A.2)

where t _= t:_c/uo¢ represents the incidence of the freestream flow with the x-axis. The boundary conditions

are taken as prescribed velocity components at inflow and pressure at outflow,

(_),=0 = (,,0)e,:<_ '
v b'0

( p )_=L = ( PL )ei_'_. (A.3)

Brandt and Yavneh[5] considered entering flow (L --, oc) with inclusion of the first differential approximations

of the discrete equations to confirm algebraic convergence below discretization error in one FMG cycle,

neglecting boundary effects. Here, we consider only the differential solution using distributed relaxation,

q = Meow, and include boundary effects. Considering w of the form

then L_M_w = 0 implies

(a)w = b c-_*e i<_ (A.4)

C

0 -o + i_t 0 b

--(_ iw _(_2 + w2 c

= 0. (1.5)
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A non-trivial solution (zero determinant) exists for values of a as below,

o C {kzt, iwt, w, -,,'}.

Tiros, the general solution, w = _ve '_, can be written as

(A.6)

(o)(1)_v = B1 1 e -i_tx -k B2 0 e -i'_tx

(ol (o)+ B3 0 e-*'* + B4 0 e_x, (A.7)

1 1

which requires four boundary conditions to close the system, instead of the three required with the prim-

itive equations. Al)l)lying a Dirichlet condition for w3 at, inflow sui)plemented with the original boundary

conditions, as below,

'tit2 _ U0 e _wy,

'tv3 x=0 0

( Qou,3 ).=L = ( PL )ei<_,

the coefficients B, - B4 can be determined and are given below:

(A.8)

B1 = v0,

1

B,2 = Uo + Dll [(tu0 -v0)iD2 + 2pLe-*'L],

1 [(tuo --v0) -- ipL e-"jL]
B3 -- wDl(t + i)

1

B,_ - wD,(t - i) [-(tu0 - vo)e -2wL -ipLe-'vL], (A.9)

where Dl _- 1 + e -2_'L and D2 - 1 - e -2'°L. Note that w2 is a function of v0 only; wl is primarily a function

of uo but is coupled to t'o and PL through the boundary conditions, Eq. (A.8); the coupling is rather weak,

however, as it disappears completely for vo = tuo, as is usually the case, and L --* oc.

The primitive variables, q _ (:tcity, can t)e determined from q = M_:w, ms below,

A(1)q- l+t9 t
0

A2 _ e_,Ox
e-'_tx + _ 7+i

1

A3 _ e_X

1

(A.10)
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D2 [i(tuo -vo) + 2pLc-_I"],
A1 = uo + tvo + -_l

A2 = +i(tuo -Vo) + pLe -_r,

A3 = -i(tuo - vo)c -2_'L + pLc -_L, (A.11)

It can be verified that the solution above satisfies (A.1) and the boundary conditions (A.3). The boundary

conditions for w discussed in the Inain body of the text are discrete forms of the differential boundary

conditions given by (A.8) above. For the linearized, constant coefficient case considered here, both the

discrete and differential forms share the l)rot)erty that a solution to the distributed relaxation equations

with boundary conditions (A.8) satisfy." identically tile differential equations (A.1) with t)oundary conditions

(A.3).

Appendix B. Tangency.

Tile linearized Euler equations, Eq. (A.1), are again considered but with t = 0 (Q0 -= 0x) and with

periodicity in the l'-direction over a finite domain, 0 _< y < H. Linearized tangency boundary conditions

are prescribed as v at tile top and bottom of the channel,

_,(x,H) 'v.
(B.1)

Considering w of the form

then L_M_w = 0 implies

a ) e-'_v_ 'i'_x (B.2)
W = b _

e

0 iw 0 b = O.

i.; -t_ -a 2 4- w 2 c

A non-trivial solution (zero determinant) exists for values of a C {w, -w}.

Thus, the general solution, w - we *_'*, (:all be written as

(B.a)

(0) (°/W = B1 0 e_'a + B2 0 e -_ (B.4)

1 1

which only requires two boundary conditions, consistent with the t)rimitive equations; no boundary conditions

can be given for u.,l and w2. Al)t)lying a Neumann condition for w3, as t)elow,

(,(-0v(Wa))(x, H) ,'/4
(B.5)
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FI(;. C.1. Schematic of va_'iables near no-slip boundary.

tile coefficients B1 and B2 can be determined and are given below:

_¢,-_[I

B1- _,D [UfI -- "UO('-'zII] "

1

B2 = --_ [vo -t,tle-_'tl],

where D = 1 + e -2_H.

The primitive variables q = _1e_'_, can be deternfined from q = M_w, as below,

(B.{;)

(t = Bl -_' e _u + B_ ,_ e -*':_. (B.7)

It can I)e verified that the solution above satisfies (A.1) and the boundary conditions (B.1), recovering the

classical aerodynamic model problem for the flow past a wavy wall. It is clear that w3 takes the role of the

l)erturl)ation potential; the Neumann boundary conditions for w3 are implenmnted discretely at the tangeney

surfaces in the main body of the text.

Appendix C. No-Slip Boundary.

The no-slip boundary conditions along the plate in terms of the ghost variables are

[6w2](xc,O) = [Ohy(6w3)](Xc, 0), (C.1)

where x_. denotes the x position of the cell-center for cell (j, k) and x 9 = xc + _, as in Fig. C.1. Since a

third boundary condition for the ghost variables is required at the plate, we choose to split Eq. (C.1) into

two separate equations as
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At the location (xg, 0), aw 1 and 5wa can be approxinlated ill terms of nearby values as

(c.a)

(cA)

[_)?L'I](Xg,O) :_(_Wl)j,2-_- _(_?Vl)j,1,

+ (&'a).j+l,1 - (a,.,a)_,i],

111relaxing the jth colunm we assume that ((SR'3)j+l, k = 0. From Eq. (C.4), we also have (5wa)jA = (&va)a.2.

Then Eq. (C.2) can be written as

2

(aWl)j,1 z _(awl)j,2_ _(Ow?,)j.2, (c.7)

which is an iml)licit boundary condition equation to t)e iml)lemented in relaxing Eq. (4.6) at the wall.

Now assume tile convection-diffusion operator is constant, defined with a eomI)utational stencil as 1)elow,

Qp _ CIV CO CE •

CS

Ill a lexicographic pointwise relaxation, the matrix to solve for the (/iw)j,2 values is as below,

(c.s)

0 c0 - cs -2csh -1 ()_/'1 ::-- 1' 1 (C.9)

h- 1 h- 1 3h- 2 dW3 2.2 7"3 j,2

This system couples the imI)licit equations for 3u,l and dwa at the cell adjacent to the no-slip boundary,

necessitating a local 2x2 block inatrix solution. After solving for (giw)),2 (and therel)y (Su.,:_)L1 and (gi'wl)2.1)

and changing tile l)rimitive variables through Maw, it can he shown that the updated residuals of (:ell (j, k)

are zero. For variable coefficients in the convection-diffusion operator, the residuals differ ffoln zero, as they

do in tile interior of the mesh.

Considering relaxation of the entire column of ceils, tile implMt equations for the cells away from the

boundary remain in lower triangular form. Thus, the equations can be solved using all LU decomposition

with only a snmll overhead. In this instance, the entire column of residuals are zeroed out for a constant

coefficient convection-diffusion operator.

Appendix D. Boundary Stencil Modifications.

The four-point Ul)wind-biased stencil considered here requires special treatinent near boundaries. For

prescribed velocity boundary conditions at inflow, a modification is required at j = 2 for the x-momentum

equation and at j = 2 and j = 3 for the y-momentum equation. For prescrit)ed pressure at outflow, a
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modification is required at j = N_ for both momentuin equations. Tile simplest approach to maintain

secon(t order accuracy, used herein for the wake and boundary layer simulations, is to use a first-order two-

t)oint stencil for these i)oints near inflow and a fillly-upwind stencil (g = -1) near outflow. For the entering

flow simulation, more accurate stencils were used at inflow as shown below; u_.k and _3/2.k represent given

1)oundary values at x = 0, as in Fig. 6.1.

Considering the x-momentum equation, for the SUD-2 scheme, the required term u_. is computed using

n(,arby l)oints and the gradient at x = 0, i.e.,

1

1 h
2 (D.1)

where (h, g) denotes the vertical interface midpoint of the (2, k) cell and (ohu)lo,_ = -(0_v)t0,.v is given at

inflow fl'om continuity, as

1
(0_%')10,y = _ [27va/2._ - 27v3/2,k_l

-- ?'3/2,k+1 + V3/2,k-2]- (D.2)

For the NUD-2 scheme, central differencing (n = +1) is used.

Considering the y-momentum equatk)n with either scheme, central differencing is used at the j = 2

cohmm of (:ells and a third-order 4-point formula at the j = 3 column of cells, i.e.,

1
(D.3)

• h, 1
(O_,)lah/2,v = 3--_[16va/2.k - 45v2,k

+ 20v:l.k + 9v4.k], (D.4)

where (h/2, y) and (3h/2, y) denote the horizontal interface midl)oints of the (2, k) and (3, k) cells, respec-

tively.
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